Tekil Mesaj gösterimi
Alt 03-16-2008   #1
Profil
Üye
 
Kerem388 - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Dec 2007
Bulunduğu yer: oras hakında çesitli söylentiler var karar veremedik
Yaş: 37
Mesajlar: 938
Üye No: 10499

Seviye: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Canlılık: 0 / 656
Çekicilik: 312 / 33208
Tecrübe: 25

Teşekkür

Teşekkürler: 0
0 Mesajina 0 Tesekkür Aldi
Rep
Rep Puanı : 1047
Rep Gücü : 28
İtibar :
Kerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud of
Standart Harflİ İfadeler

HARFLİ İFADELER
A. HARFLİ İFADELER
4a, 2(x – y), x2, a + b + 3c gibi ifadelere harfli ifadeler denir.
· 3x2y ifadesinde 3 e kat sayı denir.
· Harfli ifadelerde, eksi (–) veya artı (+) işaretleriyle birbirinden ayrılan kısımlara terim denir.
· Harfleri ve harflerin kuvvetleri aynı olan terimlere de benzer terimler denir.
*
*
B. PASCAL (PASKAL) ÜÇGENİ ve BİNOM AÇILIMI
*
(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak katsayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.
*
*
Örnek
· (a + b)3 = a3 + 3a2b + 3ab2 + b3
· (a – b)3 = a3 – 3a2b + 3ab2 – b3
· (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
· (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
· (x ± y)n açılımının her teriminindeki x ve y nin üsleri toplamı n dir.
· (x ± y)n açılımının terim sayısı n + 1 dir.
· (x ± y)n açılımında kat sayılar toplamını bulmak için x = y = 1 alınır.

*
*
*
C. ÖZDEŞLİKLER
Çözüm kümesi R (Reel Sayılar) olan eşitliklere özdeşlik denir.
*
1. İki Kare Farkı - Toplamı
· a2 – b2 = (a – b) (a + b)
· a2 + b2 = (a + b)2 – 2ab ya da
a2 + b2 = (a – b)2 + 2ab dir.
*
2. Tam Kare İfadeler
· (a + b)2 = a2 + 2ab + b2
· (a – b)2 = a2 – 2ab + b2
· (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
· (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
*
3. İki Küp Farkı - Toplamı
· a3 – b3 = (a – b) (a2 + ab + b2 )
· a3 + b3 = (a + b) (a2 – ab + b2 )
· a3 – b3 = (a – b)3 + 3ab (a – b)
· a3 + b3 = (a + b)3 – 3ab (a + b)
*
n bir tam sayı olmak üzere,
· (a – b)2n = (b – a)2n
· (a – b)2n – 1 = – (b – a)2n – 1 dir.
(a + b)2 = (a – b)2 + 4ab
*
*
D. ORTAK ÇARPAN PARANTEZİNE ALMA
Her terimde kat sayıların e.b.o.b. u veya her terimdeki aynı (ortak) çarpan ifadelerin parantez dışına alınmasına denir.
*
*
E. GRUPLANDIRMA
Verilen ifadenin terimleri uygun şekillerde gruplara ayrılır ve ayrılan gruplarda ortak bir çarpan aranır.
*
*
F. x2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI
b = m + n ve c = m . n olmak üzere,
x2 + bx + c = (x + m) (x + n) dir.
__________________

Click the image to open in full size.
Kerem388 is offline Kerem388 isimli üyenin yazdığı bu Mesajı değerlendirin.   Alıntı ile Cevapla