Geri git   CurcunaForum.Org > Kültür - Sanat - Tarih - Eğitim ve Uzay > Dersler / Ödev > Matematik
Kayıt ol Yardım Topluluk

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Stil
Alt 03-16-2008   #1
Profil
Üye
 
Kerem388 - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Dec 2007
Bulunduğu yer: oras hakında çesitli söylentiler var karar veremedik
Yaş: 37
Mesajlar: 938
Üye No: 10499

Seviye: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Canlılık: 0 / 656
Çekicilik: 312 / 33173
Tecrübe: 25

Teşekkür

Teşekkürler: 0
0 Mesajina 0 Tesekkür Aldi
Rep
Rep Puanı : 1047
Rep Gücü : 28
İtibar :
Kerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud of
Standart ModÜler Arİtmetİk

MODÜLER ARİTMETİK

MODÜLER ARİTMETİK
a, b, m birer tam sayı ve m > 1 olmak üzere, tam sayılar kümesi üzerinde tanımlanan,
b = {(a, b) : m, (a – b) yi tam böler**
bir denklik bağıntısıdır.
b denklik bağıntısı olduğundan
Her (a, b) Î b için,
a º b (mod m)
biçiminde yazılır ve m modülüne göre a sayısı b ye denktir denir.
*

Ü ise* a º b (mod m)
***** a = b + mk, k Î Z

Tam sayıların m sayma sayısı ile bölünmesiyle elde edilen kalanlar:
0, 1, 2, 3, 4, ... , (m – 1) dir.
Her tam sayı m ile bölündüğünde hangi kalanı veriyorsa o kalana denktir. Bu kalanların her biri, belirlediği denklik sınıfının temsilci elemanı olarak alınırsa, denklik sınıfları

Bu denklik sınıflarının kümesine m nin kalan sınıflarının kümesi denir ve Z/m biçiminde gösterilir.
Buna göre,
Ü n bir sayma sayısı ve k bir tam sayı ve
a º b (mod m)
c º d (mod m)
olmak üzere,
1) a + c º b + d (mod m)
2) a – c º b – d (mod m)
3) a . c º b . d (mod m)
4) an º bn (mod m)
5) a – b º 0 (mod m)
6) k . a º k . b (mod m) dir.
7) n sayma sayısı; a, b, m sayılarının ortak böleni ise
8) a ile m ve b ile m aralarında asal olmak üzere, dir.
*

Z/m deki işlemler (mod m) ye göre yapılır.
*
Ü* x, m nin tam katı olmayan pozitif bir tam sayı ve m bir asal sayı ise,
xm – 1 º 1 (mod m) dir.
*** x in (m – 1) den daha küçük kuvvetinde de 1 bulunabilir.
Ü* x ile m aralarında asal sayılar olmak üzere, m nin asal çarpanlarına ayrılmış biçimi
*** m = ak . b r . c p ve
*** xT º 1 (mod m) dir.
Ü m asal sayı ise,* (m – 1)! + 1 º 0 (mod m) dir
__________________

Click the image to open in full size.
Kerem388 is offline Kerem388 isimli üyenin yazdığı bu Mesajı değerlendirin.   Alıntı ile Cevapla
Cevapla

Etiketler
aritmetik, moduler


Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 06:46.


Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.