Geri git   CurcunaForum.Org > Kültür - Sanat - Tarih - Eğitim ve Uzay > Dersler / Ödev > Matematik
Kayıt ol Yardım Topluluk

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Stil
Alt 03-16-2008   #1
Profil
Üye
 
Kerem388 - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Dec 2007
Bulunduğu yer: oras hakında çesitli söylentiler var karar veremedik
Yaş: 37
Mesajlar: 938
Üye No: 10499

Seviye: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Canlılık: 0 / 656
Çekicilik: 312 / 33175
Tecrübe: 25

Teşekkür

Teşekkürler: 0
0 Mesajina 0 Tesekkür Aldi
Rep
Rep Puanı : 1047
Rep Gücü : 28
İtibar :
Kerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud of
Standart PermÜtasyon

A. SAYMANIN TEMEL KURALI
1)
Ayrık iki işlemden biri m yolla, diğeri n yolla yapılabiliyorsa, bu işlemlerden biri veya diğeri m + n yolla yapılabilir.
2) İki işlemden birincisi m yolla yapılabiliyorsa ve ilk işlem bu m yoldan birisiyle yapıldıktan sonra ikinci işlem n yolla yapılabiliyorsa bu iki işlem birlikte m . n yolla yapılabilir.

B. FAKTÖRİYEL
1den n ye kadar olan sayma sayılarının çarpımına n faktöriyel denir ve n! biçiminde gösterilir.
0! = 1 olarak tanımlanır.
1! = 1
2! = 1 . 2
.................
.................
.................
n! = 1 . 2 . 3 . ... . (n – 1) . n
Ü n! = n . (n – 1)!
Ü (n – 1)! = (n – 1) . (n – 2)! dir.

C. TANIM
r ve n sayma sayısı ve r £ n olmak üzere, n elemanlı bir kümenin r elemanlı sıralı r lilerine bu kümenin r li permütasyonları denir.
n elemanlı kümenin r li permütasyonlarının sayısı,


Click the image to open in full size.

Ü 1) P(n, n) = n!
2) P(n, 1) = n
3) P(n, n – 1) = n! dir.

D. TEKRARLI PERMÜTASYON
n tane nesnenin; n1 tanesi 1. çeşitten, n2 tanesi 2. çeşitten, ... , nr tanesi de r yinci çeşitten olsun.


n = n1 + n2 + n3 + ... + nr
olmak üzere, bu n tane nesnenin n li permütasyonlarının sayısı,


Click the image to open in full size.

E. DAİRESEL (DÖNEL) PERMÜTASYON
n tane farklı elemanın dönel (dairesel) sıralanmasına, n elemanın dairesel sıralaması denir.
n elemanın dairesel sıralamalarının sayısı :


(n – 1)! dir.



n tane farklı anahtarın yuvarlak (halka biçimindeki) bir anahtarlığa sıralanmalarının sayısı :
Click the image to open in full size.




II. KOMBİNASYON
TANIM
r ve n birer doğal sayı ve r £ n olmak üzere, n elemanlı bir A kümesinin r elemanlı alt kümelerinin her birine, A kümesinin r li kombinasyonu (gruplaması) denir.
n elemanın r li kombinasyonlarının sayısı
Click the image to open in full size.


Permütasyonda sıralama, kombinasyonda ise seçme söz konusudur.



Click the image to open in full size.


Ü n kenarlı düzgün bir çokgenin köşegen sayısı:
Click the image to open in full size.
Ü Herhangi üçü doğrusal olmayan, aynı düzlemde bulunan n tane noktayla;
a) Çizilebilecek doğru sayısı
Click the image to open in full size.
b) Köşeleri bu noktalar üzerinde olan
Click the image to open in full size.
tane üçgen çizilebilir.
Ü Aynı düzlemde birbirine paralel olmayan n tane doğru en çokClick the image to open in full size.farklı noktada kesişirler.
Ü Aynı düzlemde bulunan doğrulardan n tanesi birbirine paralel ve bu n tane doğruya paralel olmayan diğer m tane doğru da birbirine paraleldir.

Click the image to open in full size.
Düzlemde kenarları bu doğrular üzerinde olan
Click the image to open in full size.tane paralelkenar oluşur.

Ü Aynı düzlemde yarıçapları farklı n tane çemberin en çokClick the image to open in full size. tane kesim noktası vardır.

III. BİNOM AÇILIMI
A. TANIM
n Î IN olmak üzere,
Click the image to open in full size.

ifadesine binom açılımı denir.
Burada;
Click the image to open in full size.

sayılarına binomun katsayıları denir.
Click the image to open in full size.

ifadelerinin her birine terim denir.
Click the image to open in full size. ifadesindeClick the image to open in full size. katsayı, xn – 1 ve yr ye de terimin çarpanları denir.

B. (x + y)n AÇILIMININ ÖZELLİKLERİ
1) (x + y)n açılımında (n + 1) tane terim vardır.
2) Her terimdeki x ve y çarpanlarının üslerinin top-lamı n dir.
3) Katsayılar toplamını bulmak için değişkenler yerine 1 yazılır. Buna göre, (x + y)n nin katsayılarının toplamı (1 + 1)n = 2n dir.
4) (x + y)n ifadesinin açılımı x in azalan kuvvetlerine göre dizildiğinde;
baştan (r + 1). terim :Click the image to open in full size.
sondan (r + 1). terim :Click the image to open in full size.
(x – y)n ifadesinin açılımında 1. terimin işareti (+), 2. terimin işareti (–), 3. terimin işareti (+) ... dır.
Kısaca; y nin üssü çift sayı olan terimin işareti (+), tek sayı olan terimin işareti (–) dir.

Ü n Î N+ olmak üzere,
(x + y)2n nin açılımında ortanca terim
Click the image to open in full size.
Ü n Î IN+ olmak üzere,
(xm +Click the image to open in full size. )n açılımındaki sabit terim,
ifadesinde m . (n – r) – kr = 0 koşulunu sağlayan n ve r değerleri yazılarak bulunur.
Ü c bir gerçel sayı olmak üzere, (x + y + c)n açılımındaki sabit terimi bulmak için
x = 0 ve y = 0 yazılır.
Ü (a + b + c)n nin açılımında
ak . br . cm li terimin katsayısı;
__________________

Click the image to open in full size.
Kerem388 is offline Kerem388 isimli üyenin yazdığı bu Mesajı değerlendirin.   Alıntı ile Cevapla
Cevapla

Etiketler
permutasyon


Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 18:41.


Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.