Geri git   CurcunaForum.Org > Kültür - Sanat - Tarih - Eğitim ve Uzay > Dersler / Ödev > Matematik
Kayıt ol Yardım Topluluk

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler Stil
Alt 03-16-2008   #1
Profil
Üye
 
Kerem388 - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Dec 2007
Bulunduğu yer: oras hakında çesitli söylentiler var karar veremedik
Yaş: 37
Mesajlar: 938
Üye No: 10499

Seviye: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Canlılık: 0 / 656
Çekicilik: 312 / 33208
Tecrübe: 25

Teşekkür

Teşekkürler: 0
0 Mesajina 0 Tesekkür Aldi
Rep
Rep Puanı : 1047
Rep Gücü : 28
İtibar :
Kerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud ofKerem388 has much to be proud of
Standart Taban Aritmetigi

TABAN ARITMETIGI
HerhangI bIr sayi sIstemInden Onluk sayi sIstemIne geçIs:
Herhangi bir sayi sisteminden Onluk sayi sistemine geçebilmek için, basamak (hane) çözümlemesi yapilmalidir. n, bir sayi sisteminin tabanini göstermek üzere n >= 2 olacak sekilde bir dogal sayi ise, (abcde)n sayisi onluk sayi sistemine söyle önüstürülür:
Dogaldir ki, sayi sistemlerinin özelligine göre, sayiyi olusturan rakamlar daima tabandan küçük olmalidir.
Örnek: (1234)5 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (10110)2 = ( ? )10 taban dönüsümünü yapalim.

Örnek: (218)9 = ( ? )10 taban dönüsümünü yapalim.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüsümünü yapalim.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152
Onluk sayi sIstemInden DIger sayi sIstemlerIne geçIs:
Onluk tabandaki bir sayi diger tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayi o sayiya bölünmelidir. Bölme islemi, bölümdeki sayi taban sayisindan küçük olana kadar yapilmalidir. Yeni tabandaki sayi, en sondan baslanarak önce bölüm sonra da kalanlar sirasiyla yazilarak elde edilir.
Örnek: (194)10 = ( ? )5 taban dönüsümünü yapalim.

Örnek: (179)10 = ( ? )9 taban dönüsümünü yapalim.

Onluk taban disindakI bIr tabandan baska bIr tabana geçIs:
Verilen sayi önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayi, geçilmek istenen tabana dönüstürülür. Yani, n verilen taban ve m istenen taban ise, dönüsümün mantigi su sekildedir:

Örnek: (132)5 = ( ? )8 taban dönüsümünü yapalim.
Önce 5 tabanindaki 132 sayisini Onluk tabana çevirelim.
25 5 1
( 1 3 2 )5 = 52.1 + 51.3 + 50.2 = 25.1 + 5.3 + 1.2 =25 + 15 + 2 = 42
Simdi de Onluk tabandaki 42 sayisini 8 tabanina çevirelim.

Böylece, (132)5 = (52)8 olarak bulunur.
Örnek: (1011)2 = ( ? )7 taban dönüsümünü yapalim.
Önce 2 tabanindaki 1011 sayisini Onluk tabana çevirelim.
8 4 2 1
( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1
= 8 + 0 + 2 + 1 = 11
Simdi de Onluk tabandaki 11 sayisini 7 tabanina çevirelim. 11 sayisini, 7' ye böldügümüzde, bölüm 1 ve kalan da 4 olacagindan,
(11)10 = (14)7
sonucunu elde ederiz. Dolayisiyla, (1011)2 = (14)7 olarak bulunur.
Onluk taban disindakI tabanlardakI sayilarin tekligi veya çiftligi:
Sayinin tabani çift ise, sayinin son rakamina (birler basamagindaki rakamina) bakilarak karar verilir. Sayet sayinin son rakami çift ise, sayi çifttir. Sayet sayinin son rakami tek ise, sayi tektir. Örnegin, (12345)8 = Tek, (1236)8 = Çift olur.
Sayinin tabani tek ise, sayinin rakamlari toplamina bakilarak karar verilir. Sayet sayinin rakamlari toplami çift ise, sayi çifttir. Sayet sayinin rakamlari toplami tek ise, sayi tektir. Örnegin, (234)7 = Tek, (2361)7 = Çift olur.
Onluk taban disindakI tabanlarda arItmetIk Islemler:
Toplama IslemI:
Örnek: (101)2 + (11)2 = ( ? )2
( 1 0 1 )2
+ ( 1 1 )2
__________
( 1 0 0 0 )2
Ikilik tabanda 1 ile 1' in toplami 10' dir. Dolayisiyla, ilgili basamaga 0 yazilir ve 1 sayisi bir önceki basamaga eklenir.
Örnek: (234)5 + (143)5 = ( ? )5
Birler basamaginin toplami, 4 + 3 = 7' dir. 7, 5 tabaninda 12' dir. Dolayisiyla, birler basamagina 2 yazip, besler basamagina 1 ekleriz.
Besler basamaginin toplami, 3 + 4 + 1 (birler basamagindan eklenen) = 8 olur. 8, 5 tabaninda 13' tür. Dolayisiyla, besler basamagina 3 yazip, yirmibesler basamagina 1 ekleriz.
Yirmibesler basamaginin toplami, 2 + 1 + 1 (besler basamagindan eklenen) = 4 olarak bulunur.
Sonuç olarak, toplam (432)5 olur.
Çikarma IslemI:
Örnek: (132)5 - (23)5 = ( ? )5
Birler basamaginin farki, 2' den 3 çikartilamayacagi için, besler basamagindan 1 alinmalidir (yani, 5 alinmalidir). Bu durumda, 7' den 3 çikartilarak 4 bulunur.
Besler basamagindan 1 alindigi için, burada 2 kalmistir. Böylece, 2' den 2 çikartildiginda 0 kalir.
Yirmibesler basamagindaki 1 sayisindan birsey çikartilmadigi için aynen alinir.
Sonuç olarak, fark (104)5 bulunur.
Çarpma IslemI:
Örnek: (144)5 x (23)5 = ( ? )5
(144)5 x (23)5 = (144)5 x (3)5 + (144)5 x (2)5 = ( 1 0 4 2 )5
+ ( 3 4 3 )5
= ( 1 0 0 2 2 )5
Çarpma isleminin mantigi, onluk tabandaki çarpma islemine çok benzer. 5 tabanindaki 144 ile 3' ün çarpimi söyle yapilir:
Birler basamagi: 4 ile 3' ün çarpimi 12' dir. Birler basamagina 2 yazilir ve 10 sayisinin içinde 5 sayisi 2 tane oldugu için, besler basamagina 2 aktarilir.
Besler basamagi: 4 ile 3' ün çarpimi 12' dir ve buna birler basamagindan aktarilan 2 sayisi da ilave edilerek 14 elde edilir. Besler basamagina 4 yazilir ve 10 sayisinin içinde 5 sayisi 2 tane oldugu için, yirmibesler basamagina 2 aktarilir.
Yirmibesler basamagi: 1 ile 3' ün çarpimi 3' tür ve besler basamagindan aktarilan 2 sayisi da ilave edilerek 5 elde edilir. 5 tabaninda 5, 10 oldugu için yirmibesler basamagina 0 ve yüzyirmibesler basamagina da 1 yazilir.
Örnek: ( 25m0 )6 = ( 642 )10 ise, m = ?
216 36 6 1
( 2 5 m 0 )6 = ( 642 )10
216.2 + 36.5 + 6.m + 1.0 = 642
432 + 180 + 6m + 0 = 642
612 + 6m = 642
6m = 642 - 612
6m = 30
m = 5
Örnek: ( 102 )m + ( 145 )m = ( 251 )m ise, m = ?
m2 m 1 m2 m 1 m2 m 1
( 1 0 2 )m + ( 1 4 5 )m = ( 2 5 1 )m
( m2.1 + m.0 + 1.2 ) + ( m2.1 + m.4 + 1.5 ) = m2.2 + m.5 + 1.1
m2 + 2 + m2 + 4m + 5 = 2m2 + 5m +1
2m2 + 4m + 7 = 2m2 + 5m + 1
4m +7 = 5m + 1
7 - 1 = 5m - 4m
6 = m
Örnek: ( 124 )5 + ( 103 )5 = ( m2m )7 ise, m = ?
( 124 )5 + ( 103 )5 = ( 232 )5 bulunur. ( 232 )5 sayisini onluk tabana çevirelim.
25 5 1
( 2 3 2 )5 = 25.2 + 5.3 + 1.2 = 50 + 15 + 2 = 67 olur.
Simdi de onluk tabandaki 67 sayisini 7' lik tabana çevirelim.
64 : 7 = 7.9 + 1 olur. Bölüm 9 ve kalan 1 dir.
9 : 7 = 7.1 + 2 olur. Kalan 2 ve bölüm 1 olur. En sondaki bölümle kalanlar tersten yazilarak, ( 67 )10 = ( 121 )7 bulunur.
Buradan,
( m2m )7 = ( 121)7
oldugundan, m = 1 bulunur.
__________________

Click the image to open in full size.
Kerem388 is offline Kerem388 isimli üyenin yazdığı bu Mesajı değerlendirin.   Alıntı ile Cevapla
Cevapla

Etiketler
aritmetigi, taban


Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 01:26.


Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.