![]() |
#6 |
![]()
Teorem:Bütün sayılar 2'nin üsleri toplamı (tekrarsız) olarak yazılabilir.
Örnekler:
12 x 42 = 21 x 24 23 x 96 = 32 x 69 24 x 84 = 42 x 48 13 x 62 = 31 x 26 46 x 96 = 64 x 69
1'den başlamak üzere kendisinden önceki iki sayının toplamına karşılık gelen sayıların dizisidir. 1, 2, 3, 4, 5, 6, 7, 8, 9, ...ise, fibonacci dizisi: 1, 1(0+1), 2(1+1), 3(1+2), 5(2+3), 8(3+5), 13(5+8),... yani: 1, 2, 3, 5, 8, 13, 21, 34, 55...
3 x 37 = 111 6 x 37 = 222 9 x 37 = 333 12 x 37= 444 15 x 37 = 555 18 x 37 = 666 21 x 37 = 777 24 x 37 = 888 27 x 37 = 999
1 + (1/1!) + (1/2!) + (1/3!) + (1/4!) + ... + (1/n!) serisinin toplamı "e" sayısını verir. Yaklaşık değeri: e = 2.71828182...dir. (e sabit sayısının kullanıldığı yerler ayrıca anlatılacaktır) ¥, sadece matematikçilerin değil, düşünen herkesin ilgisini ve merakını çekmiştir. ¥'u sayı olarak düşünürsek; aklımızı zorlayıp "en büyük sayı"ya ulaştığımızı kabul edelim. O sayının mutlaka 1 fazlası olacağından yeni sayılar elde ederiz. Meselâ sayı doğrusunda 0 ile 1 arasında sonsuz adet reel sayı vardır. 0 ile 10 arasında da sonsuz adet sayı olduğuna göre bu iki sonsuz da birbirine eşit olamaz. Bu yüzden matematikte "¥/¥" ifadesi tanımsızdır. Aynı şekilde 1¥ ifadesi de henüz tanımlanamamıştır. Hâlbuki 1'in tüm üsleri 1' eşit olmalıdır. ![]() Şimdi ¥'un ne kadar büyük olduğu daha iyi anlaşılıyor (veya anlaşılamıyor ![]()
__________________
Forumun En ii Cs Cfg Sini İndirmek İçin Tıkla (: TıkLa ! Bir Teşekkürü Cok Gormeyin (: Why So SeriouS ? ![]() |
|
![]() |
![]() |
Etiketler |
matematigin, sirlari |
Seçenekler | |
Stil | |
|
|